Вісник Київського національного університету імені Тараса Шевченка

ГЕОГРАФІЯ

Bulletin of Taras Shevchenko National University of Kyiv

GEOGRAPHY

Oliynyk R., GEOSENGINEERING AEROSOLS

Oliynyk R.

ORCID ID: 0000-0002-8675-700
Taras Shevchenko National University of Kyiv, Kyiv, Ukraine

GEOSENGINEERING AEROSOLS

Abstract:

The unambiguous indicators of climate change caused by the industrialization of society are becoming increasingly apparent. Urgent short-term transformations in energy and transport systems around the world are needed to significantly reduce carbon emissions. The scale of the transformation, the lack of effective public response, and the inertia of changes in energy infrastructure are prompting other strategies to mitigate some of the effects of global warming. If global warming continues to rise, it could lead to serious risks of large-scale, irreversible failure in the climate system. Projections of such levels of warming are within the XXI century. As efforts to achieve ambitious emission reduction targets have so far failed, options for mitigating climate change or adapting to climate change have recently been seriously considered. Limiting global warming by 2° C above pre-industrial levels in the 21st century. Avoids dangerous human interference in the climate system. If the 2° C mark is exceeded, the effects of climate change can no longer be controlled. Currently, the increase in average global surface temperature is already about 1.0° C above pre-industrial values. It is estimated that 0.5° C is already in the climate system, especially in the oceans, and has not yet affected the planet’s surface air temperature. However, there are currently no signs of any radical containment of global warming. On the contrary, the concentration of carbon dioxide, arguably the most important anthropogenic greenhouse gas in the atmosphere, continues to rise steadily. Given this situation, it is not only the scientific community that is actively discussing artificial interventions in the climate system to limit global warming, which is known as climate geoengineering.
Keywords: global warming, aerosols, geoengineering.

Language: Ukranian

DOI: http://doi.org/10.17721/1728-2721.2022.82.2

References:

  1. Andreae, M, Jones, C. & Cox, P. (2005). Strong present-day aerosol cooling implies a hot future. Nature 435, p.1187-1190. DOI: 10.1038/ nature03671
  2. Arnold, F., A. Kiendler, V. Wiedemer, S. Aberle, T. Stilp, andR. Busen (2000). Chemiion concentration measurements in jet engine exhaust at the ground: Implications for ion chemistry and aerosol formation in the wake of a jet aircraft, Geophys. Res. Lett., 27, p. 1723-1726, 2000. DOI: 10.1029/ 1999GL011096
  3. Augustine, G., Soderstrom, S., Milner, D., & Weber, K. (2019). Constructing a distant future: Imaginaries in geoengineering. Academy of Management Journal, 62(6), p. 1930-1960. 2019. DOI: 10.5465/ amj.2018.0059
  4. Bala G, Duffy P. B., Taylor K. E. (2008). Impact of geoengineering schemes on the global hydrological cycle. PNAS 2008, vol. 105, no. 22, p. 7664-7669. 2008. DOI: 10.1073/pnas.0711648105
  5. Bala G.(2009) Problems with geoengineering schemes to combat climate change. CURRENT SCIENCE, Vol. 96, No. 1, 10, 2009.
  6. Ban-Weiss G. A. and Caldeira K. (2010). Geoengineering as an optimization problem. – Environ. Res. Lett., 5 034009, 2010. DOI: 10.1088/ 1748-9326/5/3/034009
  7. Bauman J. J., Russell P. B., Geller M. A., Patrick Hamill. (2003). A stratospheric aerosol climatology from SAGE II and CLAES measurements: 2. Results and comparisons, 1984-1999. Journal of Geophysical Research: Atmospheres, v. 108,2003. DOI: 10.1029/2002JD002993
  8. Bengtsson, I. (2001). Uncertainties of global climate predictions’, in Schulze, E.-D., et al. (eds.), Global Biochemical Cycles in the Climate System, Academic Press, pp. 15-30. ISBN 0-12-631260-5.
  9. Bengtsson, L, Semenov, V. and Johannessen, O. M. (2004). TOe early 20th century warming in the Arctic – A possible mechanism’, Journal of Climate, 17 (20). pp. 4045-4057. 2004. ISSN 0894-8755.DOI: 10.1175/ 1520-0442(2004)017 < 4045^™^ > 2.0.CO;2.
  10. Bengtsson, L. (2006) Geo-Engineering to Confine Climate Change: Is it at all Feasible? Climatic Change, 77 (3-4). pp. 229-234. 2006. ISSN 0165-0009.DOI: 10.1007/s10584-006-9133-3
  11. Bengtsson, L., Hodges, K. I., Roeckner, E., and Brokopf, R. (2006). On the naturalvariability of thepre-industrial European Climate’, Climate Dyn. 1-18, 2006. DOI: 10.1007/s00382-006-0168-y
  12. Brock Charles A., Schroder F. K’fircher B., Petzold A., Busen A., Fiebig M. (2000). Ultrafine particle size distributions measured in aircraft exhaust plumes. Journal of geophysical research, Vol. 105, No. D21, p. 26555-26,567. 2000. DOI: 10.1029/2000jd900360
  13. Budyko, M. I. (1977). Climatic Changes. American Geophysical Union, 1977. DOI: 10.1098/rsta.2008.0132
  14. Collins, W. D., Hack J. J., Rasch P. J., (2006). The Formulation and Atmospheric Simulation of the Community Atmosphere Model: CAM3. Article in Journal of Climate. June 2006. DOI: 10.1175/JCLI3760.1
  15. Crutzen, P. J. (2006). Albedo enhancement by stratospheric sulfur injections: A contribution to resolve a policy dilemma? Climatic Change, this issue. DOI: 10.1007/s10584-006-9101-y
  16. Cvijanovic I., Caldeira K., MacMartin D. G. (2015). Impacts of ocean albedo alteration on Arct^ sea ice restoration and Northern Hemisphere climate. – Environ. Res. Lett., vol. 10, 044020. DOI: 10.1088/1748-9326/10/ 4/044020
  17. Dai, Z, Weisenstein, D. K., & Keith, D. W. (2018). Tailoring meridional and seasonal radiative forcing by sulfate aerosol solar geoengineering. Geophysical Research Letters, 45(2), 1030-1039. DOI: 10.1002/2017GL076472C
  18. Delworth, T. L, & Knutson, T. R. (2000). Simulation of early 20th century global warming. Science, 287(5461), p. 2246-2250. DOI: 10.1126/science.287.5461.2246
  19. Dentener, F. J., Carmichael, G. R., Zhang, Y., Lelieveld, J., & Crutzen, P. J. (1996). Role of mineral aerosol as a reactive surface in the global troposphere. Journal of Geophysical Research: Atmospheres, 101(D17), 22869-22889. DOI: 10.1029/96JD01818
  20. Driscoll S, Bozzo A., Gray L. J., Robock A., and Stenchikov G. (2012). Coupled Model Intercomparison Project 5 (CMIP5) simulations of climate following volcanic eruptions. – J. Geophys. Res., vol. 117, D17105, DOI: 10.1029/2012JD017607
  21. Gasparini B., Münch S., Poncet L., Feldmann M., Lohmann U. (2017). Is increasing ice crystal sedimentation velocity in geoengineering simulations a good proxy for cirrus cloud seeding? Atmos. Chem. Phys., 17, p. 4871-4885. DOI: 10.5194/acp-17-4871-2017.
  22. Gilfillan D., Marland G. (2021). CDIAC-FF: global and national CO2 emissions from fossil fuel combustion and cement manufacture: 1751-2017. Earth Syst. Sci. Data, 13, p. 1667-1680, 2021. DOI: 10.5194/essd-13-1667-2021
  23. Govindasamy, B. and Caldeira, K. (2000). Geoengineering Earth’s radiation balance to mitigate CO2-induced climate change. Geophys. Res. Lett.,2000, 27, p. 2141-2144. DOI: 10.1029/1999GL006086
  24. Govindasamy, B., Caldeira, K., Duffy, P. B. (2003). Geoengineering Earth’s radiation balance to mitigate climate change from a quadrupling of CO2. Global Planet. Change, 2003, 37, p. 157-168. DOI: 10.1016/S0921- 8181(02)00195-9
  25. Gunderson R., Petersen B., Stuart D. (2018). A Critical Examination of Geoengineering: Economic and Technological Rationality in Social Context. Sustainability 2018, 10, 269, p. 1-21. DOI: 10.3390/su10010269
  26. Gunderson, R., Stuart, D., & Petersen, B. (2019). The political economy of geoengineering as plan B: Technological rationality, moral hazard, and new technology. New Political Economy, 24(5), p. 696-22.7.15. New Political Economy 2019, Vol. 24, No. 5, 696-715. DOI: 10.1080/ 13563467.2018.1501356
  27. Heald, C. L., Jacob, D. J., Park, R. J., Russell, L. M., Huebert, B. J., Seinfeld, J. H., Weber, R. J. (2005). A large organic aerosol source in the free troposphere missing from current models. Geophysical Research Letters, 32(18). DOI: 10.1029/2005GL023831
  28. Heckendorn P., Weisenstein D, Fueglistaler S, Luo B.P., Rozanov E., SchranerM., Thomason L. W, Peter T. (2009). The impact of geoengineering aerosols on stratospheric temperature and ozone. Environ. Res. Lett. 4 (2009) 045108 (12pp) DOI: 10.1088/1748-9326/4/4/045108
  29. Horowitz Hannah M., Holmes C., Wright A., Sherwen T, Wang X., Evans M., Jiayue Huang J., Jaegle L., Chen Q., Shuting Zhai S., Alexander B. (2020). Effects of Sea Salt Aerosol Emissions for Marine Cloud Brightening on Atmospheric Chemistry: Implications for Radiative Forcing. Geophys Res Lett. 2020 Feb 28; 47(4). DOI: 10.1029/2019GL085838
  30. IPCC_Sixth_Assessment_Report Working Group 1, 9/8/21, Retrieved from: https://www.ipcc.ch/2021/08/09/ar6-wg1-20210809-pr/ Archived 2021-08-11 at the Wayback Machine
  31. Jordan P. Smith, John A. Dykema, and David W. Keith. (2018). Production of Sulfates Onboard an Aircraft: Implications for the Cost and Feasibility of Stratospheric Solar Geoengineering. Earth and Space Science, 2018, vol. 5, p. 75-174. DOI: 10.1002/2018EA000370
  32. Keith, D. W. (2000). Geoengineering the climate: History and prospect. Annual review of energy and the environment, 25(1), p. 245-284. DOI: 10.1146/annurev.energy.25.1.245
  33. Kim Do-Hyun, Shin Ho-Jeong, Chung Il-Ung. (2020). Geoengineering: Impact of Marine Cloud Brightening Control on the Extreme Temperature Change Over East Asia. Atmosphere 2020, 11, 1345. DOI: 10.3390/atmos11121345
  34. Kravitz, Ben, Alan Robock, Luke Oman, Georgiy Stenchikov, and Allison B. Marquardt. (2009). Sulfuric acid deposition from stratospheric geoengineering with sulfate aerosols. J. Geophys. Res., 114, D14109. DOI: 10.1029/2009JD011918
  35. Kravitz, B., Robock, A., Boucher, O., Schmidt, H., Taylor, K. E., Stenchikov, G., and Schulz, M. (2011). The Geoengineering Model Intercomparison Project (GeoMIP). Atmospheric Science Letters, 12, 162-167. DOI: 10.1002/asl.316, 2011
  36. Kravitz, Ben, and Alan Robock. (2017). Vetting new models of climate responses to geoengineering: The Seventh Meeting of the Geoengineering Model Intercomparison Project; Newry, Maine, 26 July 2017, Eos, 98.DOI: 10.1029/2017E008938
  37. Kravitz, Ben, Alan Robock, Olivier Boucher, Mark Lawrence, John C. Moore, Ulrike Niemeier, Trude Storelvmo, Simone Tilmes, and Robert Wood. (2018). The Geoengineering Model Intercomparison Project – introduction to the second special issue. Atmos. Chem. Phys., 18, 9 pp. DOI: 10.5194/acp- special_issue376-preface
  38. Lee, Joonsuk; Yang, Ping; Dessler, Andrew E.; Gao, Bo-Cai; Platnick, Steven. (2009). Distribution and Radiative Forcing of Tropical Thin Cirrus Clouds. Journal of the Atmospheric Sciences. 66 (12): 3721-3731. Bibcode:2009JAtS…66.3721L. DOI: 10.1175/2009JAS3183.1
  39. Li, Z, Xia, X., Cribb, M., Mi, W, Holben, B., Wang, P.,… & Dickerson, R. E. (2007). Aerosol optical properties and their radiative effects in northern China. Journal of Geophysical Research: Atmospheres, vol. 112(D22). DOI: 10.1029/2006JD007382
  40. Lunt, D. J., Ridgwell, A., Valdes, P. J., Seale, A. (2008). Sunshade World: A fully coupled GCM evaluation of the climatic impacts of geoengineering. Geophys. Res. Lett., 2008, 35, L12710. DOI: 10.1029/ 2008GL033674
  41. Matthews H. D., Caldeira K. (2007). Transient climate-carbon simulations of planetary geoengineering. PNAS 2007, vol. 104, no. 24, p. 9949-9953. DOI: 10.1073pnas.0700419104
  42. McClellan, J., D. W. Keith, and J. Apt (2012) Cost analysis of stratospheric albedo modification delivery systems, Environmental Research Letters.DOI: 10.1088/1748-9326/7/3/034019
  43. McCusker, K. E., K. C. Armour, C. M. Bitz, and D. S. Battisti. (2014). Rapid and extensive warming following cessation of solar radiation management, Environmental Research Letter.DOI: 10.1088/1748-9326/ 9/2/0240057.57
  44. Mittiga, R. (2019). What’s the Problem with Geo-engineering? Social Theory and Practice. Vol. 45, No. 3, p. 471-499. DOI: 5840/ soctheorpract201992768
  45. Montzka S., Calvert, B. D. Hall, J. W. Elkins, T. J. Conway, P. P. Tans, C. Sweeney (2007). On the global distribution, seasonality, and budget of atmospheric carbonyl sulfide (COS) and some similarities to CO2. DOI: 10.1029/2006JD007665
  46. Montzka S, Calvert P., Hall B. D, Elkins J. W., Conway T. J, Tans P. P., Sweeny C.(2007) On the global distribution, seasonality, and budget of atmospheric carbonyl sulfide (COS) and some similarities to CO2. Journal of Geophysical Research 112, p. 1-15.2007. DOI: 10.1029/2006JD007665
  47. Niemeier U., Schmidt H., Aterskj&r K., Kristjansson J. E. (2013). Solar irradiance reduction via climate engineering: Impact of different techniques on the energy balance and the hydrological cycle. Journal of Geophysical Research: Atmospheres, Vol. 118, P. 11905-11917, DOI: 10.1002/2013JD020445
  48. Pitari G., Daniele Visioni D., Mancini E., Cionni I., Glauco Di GenovaG., Gandolfi I. (2016). Sulfate Aerosols from Non-Explosive Volcanoes: Chemical-Radiative Effects in the Troposphere and Lower Stratosphere. Atmosphere 2016, 7, 85, p. 2-24. DOI: 10.3390/ atmos7070085
  49. Quaglia I., Daniele VisioniD., Pitari G. and Ben Kravitz B.(2021) A novel approach to sulfate geoengineering with surface emissions of carbonyl sulfide. Atmospheric Chemistry and Physics. Preprint. Discussion started: 11 October 2021. DOI: 10.5194/acp-2021-813
  50. Rasch, Philip J., Simone Tilmes, Richard P. Turco, Alan Robock, Luke Oman, Chih-Chieh (Jack) Chen, Georgiy L. Stenchikov, and Rolando R. Garcia. (2008). An overview of geoengineering of climate using stratospheric sulfate aerosols. Phil. Trans. Royal Soc. A., 366, 4007-4037, DOI: 10.1098/rsta.2008.0131
  51. Rasch, P. J., Crutzen, P. J., Coleman, D. B. (2008). Exploring the geoengineering of climate using stratospheric sulfate aerosols: The role of particle size. Geophysical Research Letters, vol. 35, 2, L02809, DOI: 10.1029/2007GL032179
  52. Rasch, P. J., Tilmes, S, Turco, R. P., Robock, A, Oman, L, Chen, C. C.,… & Garcia, R. R. (2008). An overview of geoengineering of climate using stratospheric sulphate aerosols. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 366(1882), p. 4007-4037. DOI: 10.1098/rsta.2008.0131
  53. Righi M., Hendricks J., Ulrike Lohmann U., Beer C. G., Valerian Hahn V., Heinold B., Romy Heller R., Kramer M., Ponater M., Christian Rolf C., Ina Tegen I., Voigt C. (2020). Coupling aerosols to (cirrus) clouds in the global EMAC-MADE3 aerosol-climatemodel. Geosci. Model Dev., 13, p. 1635¬1661, 2020.DOI: 10.5194/gmd-13-1635-2020.
  54. Robock A. (2000). Volcanic Eruptions and climate. Reviews of Geophysics, 38, 2 p. 191 219. DOI: 10.1029/1998RG000054
  55. Robock, A., (2008). Whither geoengineering? Science, 320, p. 1166¬1167.
  56. Robock, A., Allison B. Marquardt, Ben Kravitz, and Georgiy Stenchikov. (2009). The benefits, risks, and costs of stratospheric geoengineering. Geophys. Res. Lett., 36, L19703, DOI:10.1029/ 2009GL039209/
  57. Robock, A., Douglas G. MacMartin, Riley Duren, and Matthew W. Christensen. (2013). Studying geoengineering with natural and anthropogenic analogs. Climatic Change, 121, p. 445-458, DOI:10.1007/ s10584-013-0777-5
  58. Robock, Alan. (2014). Stratospheric aerosol geoengineering, Issues Env. Sci. Tech. (special issue “Geoengineering of the Climate System”), 38, p. 162-185.
  59. Robock, Alan. (2015). Cloud control: Climatologist Alan Robock on the effects of geoengineering and nuclear war. Bull. Atomic Sci., DOI:10.1177/0096340215581353
  60. Robock, Alan. (2016). Albedo enhancement by stratospheric sulfur injection: More research needed. Earth’s Future, 4, DOI:10.1002/ 2016EF000407
  61. Robock, Alan. (2014). Stratospheric aerosol geoengineering, Issues Env. Sci. Tech. (special issue “Geoengineering of the Climate System”), 38, p. 162-185.
  62. Schmidt, H, K. AlterskJ&r, D. Bou Karam, O. Boucher, A. Jones, J. E. Kristjansson, U. Niemeier, M. Schulz, A. Aaheim, F. Benduhn, M. Lawrence, and C. Timmreck. (2012). Solar irridiance reduction to counteract radiative forcing from a quadrupling of CO2: Climate responses simulated by four Earth system models. Earth Syst. Dynam., Eart Syst. Dynam., 3, p. 63-78.
  63. Smith W. The cost of stratospheric aerosol injection through 2100 (2020). Environ. Res. Lett. 15 (2020),114004. DOI: 10.1088/1748-9326/ aba7e7.
  64. Solomon S. IPCC (2007): Climate change the physical science basis. Agufall meeting abstracts. Vol. 2007, p. U43D-01.
  65. Steele, H. M., Turco, R. P. (1997). Separation of aerosol and gas components in the Halogen Occultation Experiment and the Stratospheric Aerosol and Gas Experiment (SAGE) II extinction measurements’ Implications for SAGE II ozone concentrations and trends. Journal of Geophysical Research, Vol. 102, No. D16, p. 19,665-19,681, 1997.
  66. Tilmes S, Pan L. L.,Hoor P., Atlas E., Avery M. A. Campos T. Christensen L. E., Diskin G. S., Gao R.-S., Herman R. L, Hintsa E. J., Loewenstein M., Lopez J., Paige M. E, Pittman J. V., Podolske J. R., et.al. (2010). An aircraft-based upper troposphere lower stratosphere O3, CO, and H2O climatology for the Northern Hemisphere. Journal of Geophysical Research, Vol. 115, D14303, DOI:10.1029/2009JD012731, 2010.
  67. Tilmes S., Fasullo J., Lamarque J-F., Marsh D. R., Mills M., Kari Al- terskj&r K., MuriH., Kristjansson J. E., Boucher O., Schulz M., ColeJ. N. S, Curry C. L., Jones A., Haywood J., Irvine P. J., Moor J. C., KaramD. B., Kravitz B, RaschP. J., Singh B., Yoon J.-H., Niemeier U., Hauke Schmidt H, Robock A., Yang S., and Shingo Watanabe S. (2013). The hydrological im¬pact of geoengineering in the Geoengineering Model Intercomparison Project (GeoMIP). J. Geophys. Res. Atmos., 118, 11,036-11,058. DOI:10.1002/ jgrd.50868.
  68. Tilmes S., Richter J. H., Mills M. J., Kravitz B., Macmartin D. G, Garcia R. R., Kinnison D. E, Lamarque J.-F., Tribbia J. and Vitt F. (2018). Effects of different stratospheric SO2 injection altitudes on stratospheric chemistry and dynamics J.Geophys. Res. 2018,.123, p. 4654-4673. DOI: 10.1002/2017JD028146
  69. Wigley T. M. L. (2006). A combined mitigation/geoengineering approach to climate stabilization. Science vol. 314, p. 452-454. DOI: 10.1126/science.11317
  70. Yu, F., and R. P. Turco. (1998). The formation and evolution of aerosols in stratospheric aircraft plumes: Numerical simulations and comparisons with observations, J. Geophys. Res., 103, p. 25915-25934. DOI: 10.1029/98JD02453
  71. Yu, F., and R. P. Turco. (1998). Contrail formation and impacts on aerosol properties in aircraft plumes: Effects of fuel sulfur conten.Geophysical Research Letters, vol. 25, no. 3, p. 313-316. DOI: 10.1029/97GL03695
  72. Yu F., Turco R. P. (1997) The role of ions in the formation and evolution of particles in aircraft plumes. J. Geophysical Research Letters. v. 24, № 15, p. 1927-1930, 1997.
  73. Yu, F., and R. P. Turco. (2001). From molecular clusters to nanoparticles: Role of ambient ionization in tropospheric aerosol formation, J. Geophys. Res., 106, p. 4797-4814. DOI: 10.1029/2000JD900539
  74. Zaveri, R. A., Barnard, J. C., Easter, R. C., Riemer, N., & West, M. (2010). Particle-resolved simulation of aerosol size, composition, mixing state, and the associated optical and cloud condensation nuclei activation properties in an evolving urban plume. Journal of Geophysical Research: Atmospheres, 115(D17). Retrieved from: https://agupubs.onlinelibrary.wiley.com/doi/full/ 10.1029/2009JD013616#:~:text=https%3A//doi.org/10.1029/2009JD013616

Download (.pdf)

Suggested citation:

R. Oliynyk, 2022. Geosengineering aerosols. Visnyk Kyivskogo nacionalnogo universytetu imeni Tarasa Shevchenka, Geografiya [Bulletin of Taras Shevchenko National University of Kyiv, Geography], 1/2 (82/83), 16-23 (in Ukrainian, abstr. in  English), DOI: 10.17721/1728-2721.2022.82.2

Received Editorial Board  20.04.22
Accepted for publication 13.06.22